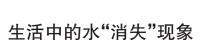
从"水的蒸发"到"如何晾衣干得快"

·堂"追水之旅"课,点燃了同学们的好奇心

在这个多彩的世界里,有一种物质 默默无闻却至关重要,那就是水。它从哪 里来、到哪里去?看似寻常的流动与消失 背后,藏着怎样的变化规律?9月的最后 一周,余姚市姚江小学301班的科学课 上,陈天天老师以《水》单元知识点为核 心,带领同学们开启了一场"追水之旅"。 这堂课的教学内容也作为公开课案例, 在2025学年第一学期余姚市小学科学 教研活动中进行了展示。


栏目主持人

记者 樊莹

特邀科普老师

陈天天

余姚市姚江小学科学老师

课堂一开始,陈老师拿起沾水的抹布,在黑 板上写了一个"水"字。

"大家盯着这个字,看看会有什么变化?"话 音刚落,孩子们的目光紧盯着黑板。过了一会儿, 一只小手高高举起:"老师,'水'字的笔画变细 了!"孩子们惊喜地发现,写在黑板上的字慢慢发 生了变化。

这个开场实验,瞬间吸引了孩子们的注意 力,为接下来的探索之旅做铺垫。"晴朗的早晨, 叶片上会有晶莹的小水珠,可到了中午,水珠就 不见了。它们去哪了?"陈老师顺势展示一张清晨 叶片挂着露珠的图片。

"被叶子吸走了!""'飞'到空气里了!"孩子 们七嘴八舌讨论起来。陈老师将这些猜想写在黑 板上,又引导大家联想更多场景:"除了露珠,生 活里还有哪些水会消失的现象?'

"湿衣服晾在阳台会变干!""洗完头不吹,头 发也会慢慢干!"同学们在老师引导下,从日常生 活中寻找线索。

"光嘴上说还不行,我们要用实验找证据!" 陈老师将学生以四人一组划分,并分发了叶片、 玻璃片和毛笔,"现在我们做对比实验,用毛笔在 叶片和玻璃上各涂一块同样大的水迹,仔细观察 它们的变化,看看水消失的真正原因是什么。"

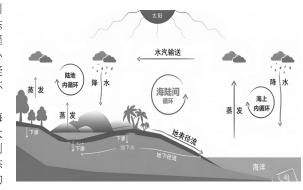
任务下发后,教室里立刻热闹起来。有的同 学专注观察,有的同学则主动想办法,快点完成 实验。比如,王一涵同学试着用吹气的方式加速 水分蒸发,一旁的张家宇惊喜地发现,这个办法 真的能让玻璃上的水消失得更快。

几分钟后,两组水迹都消失了。陈老师追问: "大家都知道玻璃不会吸水,可它上面的水也没 了。水到底去了哪里?"

带着对"水去向"的疑问,同学们迎来了 "捕捉"水蒸气的实验。陈老师拿出一杯温热的 个干燥的透明杯子:"现在,我们当'科 水和-学侦探',把跑掉的水'抓'回来!大家把杯子倒扣 在水面上方,仔细观察杯壁的变化。"孩子们认真 观察,起初杯子内壁没什么变化,可过了一会儿, 杯壁上渐渐蒙上了一层细密的小水珠。

"有小水珠!"范子怡同学兴奋地说。"没错!" 陈老师举起自己的实验杯,向全班讲解:"温水会 变成看不见的水蒸气,当水蒸气碰到凉的杯壁, 就会变回液态的小水珠。这就是水的'变身'魔 法。我们把水变成水蒸气的过程,叫蒸发。"

从观察黑板上"水"字消失,到猜想露珠去 向,再用实验验证水蒸气的存在,一套完整的"观 察一猜想一验证一解释"探究流程,让同学们摸 清了水蒸发的秘密,点燃了同学们探索自然的好 奇心。


在这堂"追水之旅"的科学课上,学生们踊跃参与。受访者供图

大自然的水循环

水循环是指地球上的水在太阳辐射、地球引 力等作用下,连续不断变换地理位置与物理相态 的运动过程,又称水分循环或水文循环。这一过程 以地球上各类形态的水为载体,在太阳辐射、地心 引力等外力驱动下,通过水汽蒸发、水汽输送、凝 结降水、水分入渗及地表与地下径流5个基本环 节完成。

从具体过程来看,在太阳辐射能的作用下,海 洋与陆地表面的水分会蒸发上升至大气,成为大 气的组成部分。这些水汽随大气环流转移,当遇到 适宜的热力、动力条件时,会凝结为液态水或固态 水,以降水形式重新降落至地球表面。而地球上的 水,主要储存在大气层、地表、地下、湖泊、河流及 海洋等载体中,为水循环提供了持续的"水源储

作为多环节的自然过程,水循环具有显著的 全球性特征。全球性的水循环涉及蒸发、大气水分 输送、地表水和地下水循环以及多种形式的水量 贮蓄。其中,降水、蒸发和径流是三大核心环节。它 们共同构成的循环路径,不仅决定着全球的水量

水循环示意图

平衡,更直接影响一个地区的水资源总量。

受地球表面太阳辐射强度分布不均的影响, 不同地区的水循环呈现出明显差异。例如,赤道地 区因太阳辐射强度高,降水量通常多于中纬度地 区,与高纬度地区相比更是显著偏高。

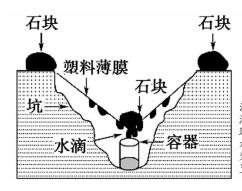
影响水蒸发快慢的"密码"

大家可以通过两个实验探究影响水蒸发快慢 的因素:取三个相同的杯子,各倒入等量的水。将 第一个杯子放在窗台接受阳光直射,第二个放在 阴凉的教室,第三个用保鲜膜密封。经过一下午, 大家会发现阳光下的杯子水量减少最快,阴凉处 的次之,盖了保鲜膜的几乎无变化。

另取等量的水,分别倒入一个大盘子和一个 小杯子,将两者放在相同的窗台上。结果显示,大 盘子里的水蒸发得更快。

尽管两个实验的操作过程不同,但大家从中 能总结出影响蒸发快慢的三大关键因素:液体温 度、液体表面积、液面上空气流动速度。

液体的温度。顾名思义,液体温度与 呈正相关,温度越高,蒸发越快。这是因为在任何 温度下,分子都在不断运动。当液体温度升高时, 分子的平均动能增大、运动速度加快,从液面飞出 的分子数量随之增多,蒸发速度自然更快。生活 中,夏天晒衣服比冬天干得快、阳光下的水比阴凉 处的水消失得更快,都是这个原理。


液体的表面积。若液体表面面积增大,处于液 面附近的分子数量会相应增加。在相同时间内,从 液面飞出的分子数量也会增多,因此水与空气的 接触面积越大,蒸发越快。比如,晒衣服时把衣服 撑开,或是倒水时把水倒进大盆里,都是通过增大 表面积来加速蒸发。

液面上空气流动的速度。飞入空气中的水蒸 气分子,可能与空气分子或其他分子碰撞后,重新 回到液体中。如果液面上方空气流动速度快、通风 条件好 水蒸气分子重新返回液体的概率就会降 低,蒸发速度也会加快。生活中用风扇快速吹干湿 衣服、雨后风吹过使地面水分更快消失,都印证了 这一规律。

沙漠取水

利用水蒸发的原理,在沙漠中还能实现"应 急取水"。

在地面挖一个坑,铺上塑料布,坑中央放 置一个容器,再在塑料布上方压一块小石头, 使塑料布中间向下凹陷。地面的水分会因温度 升高而蒸发,产生的水蒸气接触到塑料布后会 凝结成小水滴,最终滴落到容器中,从而收集 到可饮用的水。

)漢取水装置